Omlouvám se: zdůvodnění, že
Trojúhelníky APE a PBC jsou podobné rovnoramenné |EP|=|CP|=|EA|
(tedy první řádek), mám špatně.
Správně: označme P jako průsečík úseček AC a EB. Označíme-li jako beta úhel BAP, pak úhel APB=180-2*beta, úhel APE=2*beta, úhel EAP=108-beta, pak lehkým výpočtem beta=36 (úhel EAB je 108 - úhel pentagonu).
Zbytek je dobře:
Trojúhelníky APE a PBC jsou podobné rovnoramenné |EP|=|CP|=|EA|.
Chceme ukázat, že |EB|=|EA|+|AF|, ale víme, že|EA|=|EP|.
Tedy stačí ukázat, že trojúhelník AFP je rovnoramenný se základnou FP.
Pohrajte si trošku s úhly deltoidu FBCP (konkrétně já jsem si označil alfa jako úhel FPB, uvažujíc úhel ABC=108) a dolpňte na 180. Vyjde úhel AFP=úhel APF.
q.e.d.